Bandeau
Apprendre en ligne
Slogan du site

Ressources pour les enseignants et les élèves du secondaire II.

Journées hors-cadre 2009-2010
Toulouse
Programme. Coût de l’opération

Déplacement à Toulouse en avion. Visite de la Cité de l’Espace et des halles de montage de l’airbus A380. Bilan.

Article mis en ligne le 16 janvier 2010
par bernard.vuilleumier, Francesco Huber par

Journées hors-cadre du 25 au 29 avril 2010
Déplacement à Toulouse en avion. Visite de la Cité de l’Espace et des halles de montage de l’airbus A380. Les élèves ont rédigé des propositions de visites culturelles avant le voyage. Ils ont relaté leur semaine hors-cadre au retour. Ce travail a fait l’objet d’une évaluation et la note obtenue comptera dans une des disciplines de l’option spécifique « physique, applications des mathématiques ».


Programme officiel

Dimanche 25 avril

 Départ de Cointrin 12h25. Tout le monde était présent. Le vol s’est bien déroulé !
 Arrivée à Toulouse 13h40. Nous avons acquis les cartes de bus (140 €) [1]
 Achat des cartes « tribu » à la gare Matabiau (50.40 €)

Hôtel
Nous sommes descendus à l’hôtel des Ambassadeurs. Accueil chaleureux. Nous payons le solde 442.40 €. Nous distribuons 40 € à chaque élève pour les repas.

Lundi 26 avril
 Visite de la Cité de l’Espace

    • 09h30 - 11h30 visite libre. De la Terre à l’espace. Communiquer à distance. Observer la Terre. Pôle météo. Vivre dans l’espace. Explorer l’Univers.
    • 11h30 - 12h30 déjeuner au restaurant
    • 14h00 Imax (film en 3D sur la station spatiale ISS)
    • 15h30 Planétarium : des planètes aux galaxies

Mardi 27 avril
 visite de Toulouse. Place du Capitole. Salle des Illustres et salle des mariages. Couvent des Jacobins. Pont Neuf. Cour intérieure de l’Hôtel Assezat. Place Esquirol

Mercredi 28 avril
 Atelier. 4 problèmes à examiner :

    • poussée de l’Airbus A319
    • poussée de la fusée Saturne V
    • période d’un satellite en orbite basse
    • vitesse d’un satellite géostationnaire

 Visite des halles de montage de l’airbus A380. Bus 70 jusqu’à Georges Brassens, puis 20 minutes de marche.

    • 13h30 Mach 2
    • 15h00 Airbus A380

Jeudi 29 avril
 Matinée libre, sauf pour les élèves qui n’ont pas participé à l’atelier mercredi matin : ils passent un test noté (en ligne sur Moodle) sur les notions révisées dans l’atelier du mercredi matin.
 Retour à Genève à 15h20 comme prévu.

Dynamique. Oscillateur harmonique
Forces exercées sur une masse accrochée à un ressort
Choix de l’origine de l’axe qui repère la position de la masse

Modèles Stella simulant le mouvement d’une masse accrochée à un ressort (oscillateur harmonique) dans deux systèmes de référence distincts.

Article mis en ligne le 30 septembre 2006
par bernard.vuilleumier par

Une masse accrochée à un ressort constitue un oscillateur harmonique. Dans ce système, la masse est soumise à deux forces : son poids et la force de rappel due au ressort. Par un choix judicieux de l’origine de l’axe qui repère la position de la masse, il est possible de « neutraliser » la contribution du poids. L’examen du système peut alors se faire en considérant uniquement la force de rappel exercée sur la masse par le ressort lorsqu’elle s’écarte de sa position d’équilibre.


Considérons un ressort accroché au plafond. Suspendons une masse à l’extrémité libre du ressort et lâchons-la. Nous avons un oscillateur harmonique.

Oscillateur harmonique
Animation réalisée avec Mathematica et tirée de VisualDSolve de Stan Wagon.

Repérons la position de la masse depuis deux systèmes de référence.

  1. l’origine 0 du premier système coïncide avec l’extrémité libre du ressort « à vide » et l’axe Oy est vertical orienté vers le haut.
  2. l’origine 0 de second système coïncide avec la position d’équilibre de la masse accrochée au ressort et l’axe Oh est vertical orienté vers le haut.

Repérage de la masse depuis deux systèmes de référence
À gauche, l’origine de l’axe coïncide avec l’extrémité libre du ressort. À droite, l’origine de l’axe coïncide avec la position d’équilibre de la masse.

Accélération de la masse

  1. Dans le premier système, si on accroche la masse au ressort, son accélération vaudra -g-ky/m
  2. Dans le deuxième, son accélération est donnée par -kh/m.

En faisant coïncider l’origine de l’axe qui repère la masse avec sa position d’équilibre, on annule les forces qui agissent sur elle lorsqu’elle se trouve dans cette position (le poids est compensé par la force de rappel). La force exercée sur la masse pour n’importe quelle autre position ne dépend alors plus que de l’écart par rapport à cette position d’équilibre.

Premier modèle

L’origine de l’axe qui repère la position de la masse oscillante coïncide avec l’extrémité libre du ressort.

Modèle simulant le mouvement d’un oscillateur harmonique

Équations du modèle

INIT v = 0
a = -g-k*y/m
INIT y = 0
flux_y = v
Ecin = m*v^2/2
Eelastique = k*y^2/2
Emec = Ecin+Eelastique+Epot
Epot = m*g*y
g = 9.8
k = 100
m = 0.5

Résultats

Énergies mises en jeu lors de l’oscillation de la masse
La somme de l’énergie cinétique, élastique et potentielle est constante et correspond à l’énergie mécanique du système qui vaut ici 0 J.

Énergies mises en jeu lors de l’oscillation de la masse : la somme de l’énergie cinétique, élastique et potentielle est constante et correspond à l’énergie mécanique du système

 


Deuxième modèle

L’origine de l’axe qui repère la position de la masse oscillante coïncide avec sa position d’équilibre.

Énergies mises en jeu lors de l’oscillation de la masse
La somme de l’énergie cinétique de la masse et élastique du ressort est constante et est égale à l’énergie mécanique du système qui diffère de celle obtenue dans le premier modèle.

Équations du modèle

INIT v = 0
a = -k*h/m
INIT h = 9.81*m/k
flux_v = v
Ecin = m*v^2/2
Eelastique = k*h^2/2
Emec = Ecin+Eelastique
k = 100
m = 0.5

Résultats

Énergies mises en jeu lors de l’oscillation de la masse
La somme de l’énergie cinétique de la masse et élastique du ressort est constante et est égale à l’énergie mécanique du système qui diffère de celle obtenue dans le premier modèle.

Énergies mises en jeu lors de l’oscillation de la masse : la somme de l’énergie cinétique de la masse et élastique du ressort est constante et est égale à l’énergie mécanique du système qui diffère de celle obtenue dans le premier modèle.

Pour les deux modèles

Run Spec: 
From: 0 
To: 1 
DT: 0.01 
Integration Method: Runge-Kutta 4.

Conclusion

Les deux modèles permettent de vérifier que l’énergie mécanique du système est conservée. Le deuxième modèle, en faisant coïncider l’origine de l’axe avec la position d’équilibre de la masse permet de « neutraliser » la contribution du poids et simplifie le problème. La seule force qui agit alors sur la masse est une force de rappel proportionnelle à l’écart par rapport à cette position d’équilibre.

Voir aussi
 L’oscillateur harmonique
 Rotation et oscillation
 Oscillateur harmonique
 Le saut à l’élastique
 Saut à l’élastique, cas général
 Circuit électrique et oscillateur harmonique
 Oscillations
 Exercices sur les oscillations harmoniques