Déplacement à Toulouse en avion. Visite de la Cité de l’Espace et des halles de montage de l’airbus A380. Bilan.
Journées hors-cadre du 25 au 29 avril 2010
Déplacement à Toulouse en avion. Visite de la Cité de l’Espace et des halles de montage de l’airbus A380. Les élèves ont rédigé des propositions de visites culturelles avant le voyage. Ils ont relaté leur semaine hors-cadre au retour. Ce travail a fait l’objet d’une évaluation et la note obtenue comptera dans une des disciplines de l’option spécifique « physique, applications des mathématiques ».
Programme officiel
Dimanche 25 avril
– Départ de Cointrin 12h25. Tout le monde était présent. Le vol s’est bien déroulé !
– Arrivée à Toulouse 13h40. Nous avons acquis les cartes de bus (140 €) [1]
– Achat des cartes « tribu » à la gare Matabiau (50.40 €)

Hôtel
Nous sommes descendus à l’hôtel des Ambassadeurs. Accueil chaleureux. Nous payons le solde 442.40 €. Nous distribuons 40 € à chaque élève pour les repas.
Lundi 26 avril
– Visite de la Cité de l’Espace
-
- 09h30 - 11h30 visite libre. De la Terre à l’espace. Communiquer à distance. Observer la Terre. Pôle météo. Vivre dans l’espace. Explorer l’Univers.
- 11h30 - 12h30 déjeuner au restaurant
- 14h00 Imax (film en 3D sur la station spatiale ISS)
- 15h30 Planétarium : des planètes aux galaxies
Mardi 27 avril
– visite de Toulouse. Place du Capitole. Salle des Illustres et salle des mariages. Couvent des Jacobins. Pont Neuf. Cour intérieure de l’Hôtel Assezat. Place Esquirol
Mercredi 28 avril
– Atelier. 4 problèmes à examiner :
-
- poussée de l’Airbus A319
- poussée de la fusée Saturne V
- période d’un satellite en orbite basse
- vitesse d’un satellite géostationnaire
– Visite des halles de montage de l’airbus A380. Bus 70 jusqu’à Georges Brassens, puis 20 minutes de marche.
-
- 13h30 Mach 2
- 15h00 Airbus A380
Jeudi 29 avril
– Matinée libre, sauf pour les élèves qui n’ont pas participé à l’atelier mercredi matin : ils passent un test noté (en ligne sur Moodle) sur les notions révisées dans l’atelier du mercredi matin.
– Retour à Genève à 15h20 comme prévu.
Comment obtenir les performances d’un véhicule à partir de ses caractéristiques techniques.
par Yannis Pieraggi par
Dans cet article, je tâcherai de modéliser le comportement d’une voiture en mouvement, en prenant compte des caractéristiques du constructeur.

Avant de commencer, il faut choisir une voiture. J’ai utilisé les données techniques d’une BMW M3-E46 CSL, quitte a choisir une voiture, autant en prendre une qui soit prestigieuse.
Je commencerai par construire un modèle simple en deux dimensions, avec l’accélération de la voiture définie comme la somme des forces divisée par la masse. Après je rajouterai la force de frottement et je changerai la vitesse en kilomètres par heure au lieu des mètres par seconde.
les caractéristiques fournies par le constructeur
Nous prendrons donc le cas d’une voiture, démarrant à l’arrêt, donc en position nulle, dont la vitesse et l’accélération sont nulle. Nous nous pencherons sur sa vitesse, son accélération ainsi que sa position au cours du temps. Les caractéristiques techniques de la voiture (dimensions, puissance, ...) nous sont fournies par le constructeur. Nous utiliseront l’intégrateur numérique STELLA pour construire un modèle et obtenir des sorties graphiques.
– Les conditions initiales de la voiture sont donc $v=0, a =0, x=0$
– Note : masse volumique de l’air $\rho=1.293kg/m^3$
Le modèle
Nous savons que l’accélération d’un objet (ici d’une voiture) dépend de la force résultante divisée par la masse. Pour l’instant le modèle ne comporte pas encore la force de frottement, je la rajouterai dans le modèle suivant. Il y a seulement la force de traction de la voiture.
Pour définir l’accélération d’un mobile, on utilise la force de traction et la masse du véhicule. L’accélération est donc la somme des force (ici simplement la force de traction) divisée par la masse.
– Afin d’exprimer les chevaux en watt, il faut multiplier les chevaux par 736 (l’on passe des chevaux a la puissance) puis diviser cette puissance obtenue par la vitesse du véhicule plus 20, afin d’éviter que la force de traction soit nulle si la vitesse est égale à 0 (ici l’ont passe de la puissance à la force de traction).

Il s’agit du modèle le plus simple, parce qu’il ne prend pas en compte la force de frottement. Mais sans la force de frottement l’accélération de la voiture est constante et n’arrête pas d’augmenter et tend vers l’infini, de même que la vitesse qui augmente sans fin, parce que la voiture n’est pas freinée pas la force de frottement.

Ajout de la force de frottement au modèle
Une fois ce modèle construit, on peut rajouter la force de frottement. Comme la force de traction est une force qui tire la voiture vers l’avant (le mot "traction" vient de tracter, d’ailleur cette BMW est une traction, bien que dans le cas des voitures à propulsion, on devrait logiquement appeller cela la force de propulsion) la force de frottement est une force qui freine la voiture, et qui se soustrait donc à la force de traction. Je rappelle juste que pour définir l’accélération. il s’agit de la résultante des forces, donc la force de traction moins la force de frottement, le tout divisé par la masse du véhicule.
– La force de frottement dépend du coefficient de pénétration (Cx), du de la masse volumique du milieu (rho), de la section apparente (S), qui est la hauteur fois la largeur du véhicule, et du carré de la vitesse (v au carré).
Construisons donc ceci :

– Afin de passer des mètres par seconde au kilomètres par heure (qui reste quand même une unité plus pratique), il faut multiplier la vitesse par 3,6.
Et voila le modèle final !

Données techniques
Le résultat sous forme graphique

Performances de la BMW M3-E46 CSL selon STELLA
Cette voiture met 5.08 s pour passer de 0 à 100 km/h
Sa vitesse maximale est 266.62km/h et elle l’atteint au bout de 119.99 s soit 1 minute et 59.99 s
Elle met 23.27 s pour faire 1000m
données constructeur
En résumé
Nous pouvons donc dire que notre précision est bonne, sans être exceptionnelle. Notre manque de précision comparé aux données du constructeur est dû a certaines forces qui ont été simplifiées (comme prendre l’aire d’un rectangle pour la surface d’une face avant de voiture, ce n’est pas très précis), ou d’autres forces qui n’ont pas été prises en compte (telles que la force de frottement des pneus et de la route, etc ...) De plus sur le site ou figure les données constructeur, les mesures sont souvent revues à la hausse, afin de promouvoir les performances de la voiture.
Mais en fin de compte notre simulation est juste et la précision est acceptable.